Telegram Group & Telegram Channel
🗑 Нужно ли автоматически удалять один из признаков, если они сильно коррелируют

Не всегда — всё зависит от цели вашей модели.

🎯 Если важна точность предсказаний:
Современные алгоритмы машинного обучения (например, Random Forest, градиентный бустинг, нейросети) достаточно устойчивы к мультиколлинеарности.
Если оба признака способствуют улучшению метрик — удалять не обязательно.

🧠 Если важна интерпретируемость (например, в линейной регрессии):
Сильно коррелирующие признаки могут делать модель нестабильной и затруднять интерпретацию коэффициентов.
В этом случае удаление одного признака может упростить модель и сделать её более надёжной.

🔎 Как подойти на практике:
1. Проверьте через кросс-валидацию, ухудшается ли качество модели при удалении одного признака.
2. Используйте предметные знания, чтобы определить, не измеряют ли оба признака одно и то же.
3. Вместо удаления можно применить регуляризацию (например, L1 или L2), чтобы модель автоматически уменьшала влияние избыточных признаков.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/1008
Create:
Last Update:

🗑 Нужно ли автоматически удалять один из признаков, если они сильно коррелируют

Не всегда — всё зависит от цели вашей модели.

🎯 Если важна точность предсказаний:
Современные алгоритмы машинного обучения (например, Random Forest, градиентный бустинг, нейросети) достаточно устойчивы к мультиколлинеарности.
Если оба признака способствуют улучшению метрик — удалять не обязательно.

🧠 Если важна интерпретируемость (например, в линейной регрессии):
Сильно коррелирующие признаки могут делать модель нестабильной и затруднять интерпретацию коэффициентов.
В этом случае удаление одного признака может упростить модель и сделать её более надёжной.

🔎 Как подойти на практике:
1. Проверьте через кросс-валидацию, ухудшается ли качество модели при удалении одного признака.
2. Используйте предметные знания, чтобы определить, не измеряют ли оба признака одно и то же.
3. Вместо удаления можно применить регуляризацию (например, L1 или L2), чтобы модель автоматически уменьшала влияние избыточных признаков.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/1008

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA